In summary, then, when a redox reaction occurs and electrons are transferred, there is always a reducing agent donating electrons and an oxidizing agent to receive them. the precipitate is the silver chloride it forms a white Note that volts must be multiplied by the charge in coulombs (C) to obtain the energy in joules (J). Characteristic Reactions of Ni Nickel (II) ion forms a large variety of complex ions, such as the green hydrated ion, \ce { [Ni (H2O)6]^ {2+}}. A species like copper which donates electrons in a redox reaction is called a reducing agent, or reductant. nitric oxide). When aqueous solutions of silver nitrate and potassium dichromate are mixed, silver dichromate forms as a red solid. Displacement reaction of silver nitrate and copper metal Question: Question 40 of 50 A 21.5 g sample of nickel was treated with excess silver nitrate solution to produce silver metal and nickel (II) nitrate. while in the other, 2 electrons are acquired by 2 silver ions: \[\ce{2e^{-} + 2Ag^+ -> 2Ag}\label{3} \]. The overall balanced chemical equation for the reaction shows each reactant and product as undissociated, electrically neutral compounds: 2AgNO 3(aq) + K 2Cr 2O 7(aq) Ag 2Cr 2O 7(s) + 2KNO 3(aq) Is Brooke shields related to willow shields? Solution B: 0.2 M nickel (II) nitrate, green. Select the net ionic equation for the reaction that occurs when sodium hydroxide and nickel(II) nitrate are mixed. Nickel (II) chloride reacts with aluminum to produce nickel and aluminum chloride: 3NiCl2 + 2Al ==> 3Ni + 2AlCl3 Net ionic equation of silver nitrate and nickel chloride? Reduction occurs at the cathode (the right half-cell in the figure). At this point, no current flowsthat is, no significant movement of electrons through the wire occurs because the circuit is open. Although soluble barium salts are toxic, BaSO4 is so insoluble that it can be used to diagnose stomach and intestinal problems without being absorbed into tissues. b. To balance a chemical equation, enter an equation of a chemical reaction and press the Balance button. Aqueous ammonia precipitates green gelatinous Ni(OH)2: The nickel(II) hydroxide precipitate dissolves in excess ammonia to form a blue complex ion: Sodium hydroxide also precipitates nickel(II) hydroxide: Nickel(II) hydroxide does not dissolve in excess \(\ce{NaOH}\). Mixing the two solutions initially gives an aqueous solution that contains Ba2+, Cl, Li+, and SO42 ions. . Note that spectator ions are not included and that the simplest form of each half-reaction was used. \end{align} \nonumber \], The cell used an inert platinum wire for the cathode, so the cell notation is, \[\ce{Mg}(s)\ce{Mg^2+}(aq)\ce{H+}(aq)\ce{H2}(g)\ce{Pt}(s) \nonumber \]. Count the number of atoms of each element on each side of the equation and verify that all elements and electrons (if there are charges/ions) are balanced. Species which accept electrons in a redox reaction are called oxidizing agents, or oxidants. The net ionic equation for this reaction is: Set up a series of test-tube reactions to investigate the displacement reactions between metals such as silver, lead, zinc, copper and magnesium and the salts (eg sulfate, nitrate, chloride) of each of the other metals . a. Calculate the cell potential. When aqueous solutions of silver nitrate and potassium dichromate are mixed, silver dichromate forms as a red solid. A Because barium chloride and lithium sulfate are strong electrolytes, each dissociates completely in water to give a solution that contains the constituent anions and cations. The electrode in the left half-cell is the anode because oxidation occurs here. In Equation \(\ref{1}\), for example, copper reduces the silver ion to silver. concentrations of [AgNO3] = 0.100 M and [Ni(NO3)2] = 0.300 M. Refer to Table \(\PageIndex{1}\) to determine which, if any, of the products is insoluble and will therefore form a precipitate. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. The overall balanced chemical equation for the reaction shows each reactant and product as undissociated, electrically neutral compounds: \[\ce{2AgNO_3(aq)} + \ce{K_2Cr_2O_7(aq)} \rightarrow \ce{Ag_2Cr_2O_7(s) }+ \ce{2KNO_3(aq)} \label{4.2.1a} \]. Write the molecular equation, the ionic equation, and the net ionic equation for the reaction between nickel (II) chloride and silver (I) nitrate. 4.2: Precipitation Reactions - Chemistry LibreTexts General Chemistry Problems: Nickel and Silver Nitrate - BrainMass Write the molecular equation, the ionic equation, and the net ionic d. Is the reaction spontaneous as written? A 21.5 g sample of nickel was treated with excess silver nitrate solution to produce silver metal and nickel (II) nitrate. Platinum or gold generally make good inert electrodes because they are chemically unreactive. and nickel (II) nitrate. &\textrm{oxidation: }5(\ce{Fe^2+}(aq)\ce{Fe^3+}(aq)+\ce{e-})\\ e. Suppose that this reaction is carried. Canceling the spectator ions gives the net ionic equation, which shows only those species that participate in the chemical reaction: \[2Ag^+(aq) + Cr_2O_7^{2-}(aq) \rightarrow Ag_2Cr_2O_7(s)\label{4.2.3} \]. &\textrm{overall: }\ce{5Fe^2+}(aq)+\ce{MnO4-}(aq)+\ce{8H+}(aq)\ce{5Fe^3+}(aq)+\ce{Mn^2+}(aq)+\ce{4H2O}(l) 1). 6: Types of Chemical Reactions (Experiment - Chemistry LibreTexts To determine whether a precipitation reaction will occur, we identify each species in the solution and then refer to Table \(\PageIndex{1}\) to see which, if any, combination(s) of cation and anion are likely to produce an insoluble salt. (1 4 | 7 +/- 2 5 8 : 3 6 9 0 x 100 a. Solution A: 0.1 M sodium sulfide, colorless. Aqueous solutions of silver nitrate and nickel (II) bromide are mixed with each other; a double displacement reaction takes place. We will discuss solubilities in more detail later, where you will learn that very small amounts of the constituent ions remain in solution even after precipitation of an insoluble salt. Observe also that both the oxidizing and reducing agents are the reactants and therefore appear on the left-hand side of an Equation. Replace immutable groups in compounds to avoid ambiguity. and nickel (II) nitrate. Do you have pictures of Gracie Thompson from the movie Gracie's choice. The terms reduction and oxidation are usually abbreviated to redox. Because both components of each compound change partners, such reactions are sometimes called double-displacement reactions. \[\ce{2Cr}(s)+\ce{3Cu^2+}(aq)\ce{2Cr^3+}(aq)+\ce{3Cu}(s) \nonumber \]. Conversely, since iron(III) ion (Fe3+) has accepted electrons, we identify it as the oxidizing agent. The net ionic equation for this reaction is: 16.Consider the reaction when aqueous solutions of chromium (III) sulfate and lead (II) nitrate are combined. The law of conservation of mass says that matter cannot be created or destroyed, which means there must be the same number atoms at the end of a chemical reaction as at the beginning. The matter becomes somewhat clearer if we break up Equation \(\ref{7}\) into half-equations. Nickel chloride silver nitrate molecular ionic and net ionic? Two important uses of precipitation reactions are to isolate metals that have been extracted from their ores and to recover precious metals for recycling. Displacement reactions as redox reactions - Higher A balanced equation for the reaction between magnesium and copper(II) sulfate solution can be written in terms of the ions involved: Also, since the iron(III) ion has been reduced, the zinc must be the reducing agent. 4.2: Precipitation Reactions - Chemistry LibreTexts (NO2 is poisonous, and so this reaction should be done in a hood.) NiCl2 + AgNO3 = Ni(NO3)2 + AgCl - Chemical Equation Balancer If these two half-equations are added, the net result is Equation \(\ref{1}\). Because ionic substances such as \(\ce{AgNO3}\) and \(\ce{K2Cr2O7}\) are strong electrolytes (i.e., they dissociate completely in aqueous solution to form ions). The magnesium electrode is an active electrode because it participates in the oxidation-reduction reaction. What time does normal church end on Sunday? It is possible to construct this battery by placing a copper electrode at the bottom of a jar and covering the metal with a copper sulfate solution. Sulfur dioxide can be produced in the laboratory by the reaction of hydrochloric acid and a sulfite salt such as sodium sulfite. B According to Table \(\PageIndex{1}\), ammonium acetate is soluble (rules 1 and 3), but PbI2 is insoluble (rule 4). Identify each half-equation as an oxidation or a reduction. Solved How many grams of nickel (II) chloride do you need to - Chegg In the figure, the anode consists of a silver electrode, shown on the left. Table \(\PageIndex{1}\) shows that LiCl is soluble in water (rules 1 and 4), but BaSO4 is not soluble in water (rule 5). These ions are called spectator ions because they do not participate in the actual reaction. You can also ask for help in our chat or forums. Clearly, copper atoms have lost electrons, while a combination of hydronium ions and nitrate ions have accepted them. Inert electrodes are often made from platinum or gold, which are unchanged by many chemical reactions. In addition to precipitation and acid-base reactions, a third important class called oxidation-reduction reactions is often encountered in aqueous solutions. It is necessary to use an inert electrode, such as platinum, because there is no metal present to conduct the electrons from the anode to the cathode. Nickel(Ii) Chloride + Silver Nitrate = Nickel(Ii) Nitrate + Silver Chloride, (assuming all reactants and products are aqueous. We described a precipitation reaction in which a colorless solution of silver nitrate was mixed with a yellow-orange solution of potassium dichromate to give a reddish precipitate of silver dichromate: \[\ce{AgNO_3(aq) + K_2Cr_2O_7(aq) \rightarrow Ag_2Cr_2O_7(s) + KNO_3(aq)} \label{4.2.1} \]. This keeps the beaker on the left electrically neutral by neutralizing the charge on the copper(II) ions that are produced in the solution as the copper metal is oxidized. { "5.01:_Balancing_Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.02:_Galvanic_Cells" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.03:_Standard_Reduction_Potentials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.04:_The_Nernst_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.05:_Batteries_and_Fuel_Cells" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.06:_Corrosion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.07:_Electrolysis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.E:_Electrochemistry_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Fundamental_Equilibrium_Concepts" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Acid-Base_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Equilibria_of_Other_Reaction_Classes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Appendices" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "Author tag:OpenStax", "cell potential", "active electrode", "anode", "cathode", "Cell Notation", "galvanic cell", "inert electrode", "voltaic cell", "authorname:openstax", "showtoc:no", "license:ccby", "transcluded:yes", "source[1]-chem-38304" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FCourses%2FNassau_Community_College%2FGeneral_Chemistry_II%2F05%253A_Electrochemistry%2F5.02%253A_Galvanic_Cells, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{2}\): Using Cell Notation, 5.1: Balancing Oxidation-Reduction Reactions, Example \(\PageIndex{1}\): Using Cell Notation, Use cell notation to describe galvanic cells, Describe the basic components of galvanic cells. &\overline{\textrm{overall: }\ce{Mg}(s)+\ce{2H+}(aq)\ce{Mg^2+}(aq)+\ce{H2}(g)} 0.1 M silver nitrate and 0.1 M sodium chloride 0.1 M nickel (II) nitrate and three drops of 6 M sodium hydroxide 0.1 M lead (II) nitrate and 0.1 M potassium chromate 2NO3-, 2AgNO3 + NiCl2 -------> 2AgCl + Ni(NO3)2, The following uses nickel(II) chloride The most important step in analyzing an unknown reaction is to write down all the specieswhether molecules or dissociated ionsthat are actually present in the solution (not forgetting the solvent itself) so that you can assess which species are most likely to react with one another. Who makes the plaid blue coat Jesse stone wears in Sea Change? In the case of a single solution, the last column of the matrix will contain the coefficients. While full chemical equations show the identities of the reactants and the products and give the stoichiometries of the reactions, they are less effective at describing what is actually occurring in solution. The blue color of the solution on the far right indicates the presence of copper ions. e. Suppose that this reaction is carried out at 25 C with Nickel(II) ion forms a large variety of complex ions, such as the green hydrated ion, \(\ce{[Ni(H2O)6]^{2+}}\). Balancing the charge gives, \[\begin{align} Addition of an alcoholic solution of dimethylglyoxime to an ammoniacal solution of Ni(II) gives a rose-red precipitate, abbreviated \(\ce{Ni(dmg)2}\): Black \(\ce{NiS}\) is precipitated by basic solutions containing sulfide ion: Nickel(II) sulfide is not precipitated by adding \(\ce{H2S}\) in an acidic solution. equation, an example of a precipitate is: Balancing the charge gives, \[\begin{align} While full chemical equations show the identities of the reactants and the products and give the stoichiometries of the reactions, they are less effective at describing what is actually occurring in solution. To find out what is actually occurring in solution, it is more informative to write the reaction as a complete ionic equation showing which ions and molecules are hydrated and which are present in other forms and phases: \[\ce{2Ag^{+}(aq) + 2NO_3^{-} (aq) + 2K^{+}(aq) + Cr_2O_7^{2-}(aq) \rightarrow Ag_2Cr_2O_7(s) + 2K^{+}(aq) + 2NO_3^{-}(aq)}\label{4.2.2a} \]. Because the product is Ba3(PO4)2, which contains three Ba2+ ions and two PO43 ions per formula unit, we can balance the equation by inspection: \[\ce{3Ba(NO_3)_2(aq) + 2Na_3PO_4(aq) \rightarrow Ba_3(PO_4)_2(s) + 6NaNO_3(aq)} \nonumber \]. The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. No concentrations were specified so: \[\ce{Pt}(s)\ce{Fe^2+}(aq),\: \ce{Fe^3+}(aq)\ce{MnO4-}(aq),\: \ce{H+}(aq),\: \ce{Mn^2+}(aq)\ce{Pt}(s). As soon as the copper metal is added, silver metal begins to form and copper ions pass into the solution. Silver bromide and nickel (II)nitrate are the expected products. The overall reaction is: Mg+ 2H + Mg2 + + H 2, which is represented in cell notation as: Mg(s)Mg2 + (aq)H + (aq)H 2(g)Pt(s). Students tend to think that this means they are supposed to just know what will happen when two substances are mixed. In Equation \(\ref{1}\) the silver ion, Ag+, is the oxidizing agent. Na2SO3 +2HCl (arrow) 2NaCl + SO2 +H2O Draw a cell diagram for this reaction. &\textrm{oxidation: }\ce{2Cr}(s)\ce{2Cr^3+}(aq)+\ce{6e-}\\ Use uppercase for the first character in the element and lowercase for the second character. Aqueous solutions of rubidium hydroxide and cobalt(II) chloride are mixed. To obtain the complete ionic equation, we write each soluble reactant and product in dissociated form: \[ \ce{3Ba^{2+}(aq)} + \cancel{\ce{6NO_3^{-}(aq)}} + \cancel{\ce{6Na^{+} (aq)}} + \ce{2PO_4^{3-} (aq)} \rightarrow \ce{Ba_3(PO_4)_2(s)} + \cancel{\ce{6Na^+(aq)}} + \cancel{\ce{6NO_3^{-}(aq)}} \nonumber \]. Precipitation reaction of sodium sulfide and nickel(II) nitrate The electrode in the right half-cell is the cathode because reduction occurs here. Follow 2 Calculate the net ionic equation for NiCl2(aq) + 2AgNO3(aq) = Ni(NO3)2(aq) + 2AgCl(s). Oxidation occurs at the anode. Precipitation reactions are a subclass of exchange reactions that occur between ionic compounds when one of the products is insoluble. { "11.01:_Prelude_to_Aqueous_Phase_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.02:_Ions_in_Solution_(Electrolytes)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.03:_Precipitation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.04:_Hydration_of_Ions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.05:_Hydrogen_and_Hydroxide_Ions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.06:_Acid-Base_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.07:_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.08:_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.09:_Strong_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.10:_Weak_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.11:_Weak_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.12:_Amphiprotic_Species" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.13:_Conjugate_Acid-Base_Pairs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.14:_Lewis_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.15:_Redox_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.16:_Oxidation_Numbers_and_Redox_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.17:_Balancing_Redox_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.18:_Common_Oxidizing_Agents" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.19:_Common_Reducing_Agents" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.20:_Substances_Which_Are_Both_Oxidizing_and_Reducing_Agents" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.21:_Redox_Couples" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Introduction_-_The_Ambit_of_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Atoms_Molecules_and_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Using_Chemical_Equations_in_Calculations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_The_Structure_of_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_The_Electronic_Structure_of_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Chemical_Bonding_-_Electron_Pairs_and_Octets" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Further_Aspects_of_Covalent_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Properties_of_Organic_Compounds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Solids_Liquids_and_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Reactions_in_Aqueous_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Chemistry_of_the_Representative_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Ionic_Equilibria_in_Aqueous_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Thermodynamics-_Atoms_Molecules_and_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Entropy_and_Spontaneous_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Electrochemical_Cells" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Chemical_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Molecules_in_Living_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Spectra_and_Structure_of_Atoms_and_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Metals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "reducing sugar", "redox reaction", "redox", "reductant", "oxidizing agent", "oxidant", "Oxidation-Reduction Reaction", "authorname:chemprime", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FGeneral_Chemistry%2FBook%253A_ChemPRIME_(Moore_et_al.